Aufgaben zum freien Fall

- **8.** Aus welcher Höhe müssen Fallschirmspringer zu Übungszwecken frei herab springen, um mit derselben Geschwindigkeit (7 ms⁻¹) anzukommen wie beim Absprung mit Fallschirm aus großer Höhe?
- **10.** Von der Spitze eines Turmes lässt man einen Stein fallen. Nach 4 Sekunden sieht man ihn auf dem Boden aufschlagen.
- a) Wie hoch ist der Turm?
- b) Mit welcher Geschwindigkeit trifft der Stein auf den Erdboden auf?
- c) Nach welcher Zeit hat der Stein die Hälfte seines Fallweges zurückgelegt?
- d) Welche Zeit braucht der Stein zum Durchfallen der letzten 20 m?
- e) Nach welcher Zeit (vom Loslassen aus gerechnet) hört man den Stein aufschlagen? Die Schallgeschwindigkeit sei 320 ms⁻¹.
- **16.** Zum Feststellen der Tiefe eines Brunnens wird etwas Wasser hinein geschüttet. Nach 3 s hört man das Wasser unten auftreffen.
- a) Wie tief ist der Brunnen, wenn die Schallgeschwindigkeit 330 m/s beträgt?
- b) Beurteilen Sie, ob es eventuell ausreicht, die Zeit, die der Schall nach oben benötigt, zu vernachlässigen.

Aufgaben zum freien Fall

- **8.** Aus welcher Höhe müssen Fallschirmspringer zu Übungszwecken frei herab springen, um mit derselben Geschwindigkeit (7 ms⁻¹) anzukommen wie beim Absprung mit Fallschirm aus großer Höhe?
- **10.** Von der Spitze eines Turmes lässt man einen Stein fallen. Nach 4 Sekunden sieht man ihn auf dem Boden aufschlagen.
- a) Wie hoch ist der Turm?
- b) Mit welcher Geschwindigkeit trifft der Stein auf den Erdboden auf?
- c) Nach welcher Zeit hat der Stein die Hälfte seines Fallweges zurückgelegt?
- d) Welche Zeit braucht der Stein zum Durchfallen der letzten 20 m?
- e) Nach welcher Zeit (vom Loslassen aus gerechnet) hört man den Stein aufschlagen? Die Schallgeschwindigkeit sei 320 ms⁻¹.
- **16.** Zum Feststellen der Tiefe eines Brunnens wird etwas Wasser hinein geschüttet. Nach 3 s hört man das Wasser unten auftreffen.
- a) Wie tief ist der Brunnen, wenn die Schallgeschwindigkeit 330 m/s beträgt?
- b) Beurteilen Sie, ob es eventuell ausreicht, die Zeit, die der Schall nach oben benötigt, zu vernachlässigen.

Lösungen

8

geg.:	$v=7\frac{m}{s}$	ges.:	s			
Lösung:	damit er mit 7 m/s auf dem Boden aufkommt. Es gilt das Weg-Zeit-Gesetz der gleichmäßig beschleunigten Bewegung:					
	$s = \frac{g}{2} \cdot t^2$					
	Leider ist in dieser Gleichung die Geschwindigkeit nicht enthalten. Dafür aber die Fallzeit. Das Geschwindigkeit-Zeit-Gesetz hilft weiter:					
	$v=g\cdot t$					
	Das wird nach t umgestellt					
	$t = \frac{V}{V}$					
	g					
	und eingesetzt:					
	$s = \frac{g}{2} \cdot \frac{v^2}{g^2}$					
	$s = \frac{v^2}{2 \cdot g}$ $s = \frac{7^2 \frac{m^2}{s^2}}{2 \cdot 9.81 \frac{m}{s^2}}$					
	s=2,5 m					
Antwort:	Die Fallschirmspringer müssen aus einer Höhe von 2,5 m springen, um mit 7 m/s auf dem Boden aufzukommen.					

10.						
geg.:	t=4s	ges.:	a)s			
	$g=9.81\frac{m}{s^2}$		b) v			
	$\int_{0}^{\infty} g^{-3} ds$		c)t ₁			
Lösung:	a)		2			
Losung.	' ~					
	$s = \frac{9}{2} \cdot t^2$					
	$s = \frac{9.81 \text{m/s}^2}{2} \cdot 4^2 \text{s}^2$					
	_					
	$\underline{s=78,5\mathrm{m}}$					
	b)					
	$V = g \cdot t$					
	$v = 9.81 \text{m/s}^2 \cdot 4 \text{s}$					
	v = 39,2 m/s v = 141,3 km/h					
	c) Der halbe Fallweg = 39,3 m					
	$s = \frac{9}{2} \cdot t^2$					
	$t_{\frac{1}{2}} = \sqrt{\frac{2s}{g}}$					
	' <u>-</u>					
	$t_{\frac{1}{2}} = \sqrt{\frac{2 \cdot 39.3 \mathrm{m}}{9.81 \mathrm{m/s}^2}}$					
	,					
	$t_{\frac{1}{2}} = 2,83 \mathrm{s}$					
	d) Zeit für die ersten 58 m					
	$t_{58} = \sqrt{\frac{2s}{g}}$					
	$t_{58} = \sqrt{\frac{2 \cdot 58 \text{m}}{9,81 \text{m/s}^2}}$					
	$t_{58} = 3,44 \mathrm{s}$					
	diese Zeit wird von der Gesamtzeit abgezogen:					
	$t_{20} = t - t_{58}$					
	$\begin{array}{l} t_{20}=4s-3,44s\\ \underline{t_{20}=0,56s}\\ e) \ zur \ Fallzeit \ kommt \ die \ Zeit \ dazu, \ die \ der \ Schall \ benötigt, \ um \ wieder \ nach \ oben \ zu \ kommen. \end{array}$					
	$t_g = t + \frac{s}{v_s}$					
	$t_g = 4 s + \frac{78,5 m}{320 m/s}$					
	$t_g=4,25 s$					
Antwort:	<u> </u>	ch Der 9	Stein trifft mit einer Geschwindigkeit von			
7	Der Turm ist 78,5 m hoch. Der Stein trifft mit einer Geschwindigkeit von 141,3 km/h auf dem Erdboden auf. Der Stein hat nach 2,4 s die Hälfte					
	der Fallstrecke zurück gelegt. Für die letzten 20 m benötigt der Stein 0,56 s. Man hört den Stein nach 4,25 s aufschlagen.					
I	U,50 S. WALL HOLL GER S	ı c ııı nacı	14,20 5 autschlagen.			

geg.:	$v_s = 330 \frac{m}{s}$	ges.:	S
	t=3s		

Lösung:

In der gemessenen Zeit fällt der Stein im freien Fall nach unten und der Schall kommt in einer gleichförmigen Bewegung nach unten. Damit ist die Gesamtzeit:

$$t_{ges} = t_1 + t_2$$

Die Wege für beide Bewegungen sind jeweils gleich und die gesuchte Brunnentiefe:

$$S=S_1=S_2$$

Die einzelnen Wege berechnen sich nach den entsprechenden Weg-Zeit-Gesetzen:

Für den freien Fall:

$$s_1 = \frac{g}{2} \cdot t_1^2$$

und für den Schall nach oben:

$$s_2 = v_s \cdot t_2$$

Da beide Weg gleich sind, kann man beide Gleichungen gleich setzen:

$$\frac{g}{2} \cdot t_1^2 = v_s \cdot t_2$$

Diese Gleichung ist so nicht lösbar, da sie zwei Unbekannte Zeiten hat. Man kann aber eine Zeit ersetzen:

$$t_2 = t_{\text{ges}} - t_1$$

Damit wird:

$$\frac{g}{2} \cdot t_1^2 = v_s \cdot (t_{ges} - t_1)$$

$$\frac{9}{2} \cdot t_1^2 = v_s \cdot t_{ges} - v_s \cdot t_1$$

Als einzige Unbekannte taucht nun nur noch die Zeit des freien Falls auf. Über die Lösung einer quadratischen Gleichung kann diese Zeit bestimmt werden:

$$\begin{split} \frac{g}{2} \cdot t_1^2 &= v_s \cdot t_{ges} - v_s \cdot t_1 \\ 0 &= -\frac{g}{2} \cdot t_1^2 + v_s \cdot t_{ges} - v_s \cdot t_1 \\ 0 &= t_1^2 + \frac{2 \cdot v_s}{g} \cdot t_1 - \frac{2 \cdot v_s \cdot t_{ges}}{g} \end{split}$$

Diese Normalform einer quadratischen Gleichung wird nun nach der bekannten Lösungsvorschrift gelöst:

$$\begin{split} t_1 &= -\frac{v_s}{g} \pm \sqrt{\left(\frac{v_s}{g}\right)^2 + \frac{2 \cdot v_s \cdot t_{ges}}{g}} \\ t_1 &= -\frac{330 \frac{m}{s}}{9.81 \frac{m}{s^2}} \pm \sqrt{\frac{330^2 \frac{m^2}{s^2}}{9.81^2 \frac{m^2}{s^4}} + \frac{2 \cdot 330 \frac{m}{s} \cdot 3s}{9.81 \frac{m}{s^2}}} \\ t_1 &= -33.639 s \pm \sqrt{1131.59 s^2 + 201.835 s^2} \\ t_1 &= -33.639 s \pm 36.516 s \\ t_{11} &= 2.877 s \\ t_{12} &= -70.155 s \end{split}$$

Der zweite, negative Wert ist sinnlos und wird weggelassen. Der Stein fällt also 2,877 s nach unten. Damit bleiben für den Weg nach oben noch 0,123 s übrig. Wenn alles richtig ist, müssen die beiden damit berechneten Wege gleich sein:

$$s_{1} = \frac{9}{2} \cdot t_{1}^{2}$$

$$s_{1} = \frac{9.81 \frac{m}{s^{2}}}{2} \cdot 2.877^{2} s^{2}$$

$$s_{1} = 40.6 m$$

$$s_{2} = v_{s} \cdot t_{2}$$

$$s_{2} = 330 \frac{m}{s} \cdot 0.123 s$$

$$s_{2} = 40.6 m$$

b) Vernachlässigt man den Schallweg, reicht es aus, das Weg-Zeit-Gesetz des freien Falls anzuwenden:

$$s = \frac{9}{2} \cdot t^{2}$$

$$s = \frac{9.81 \frac{m}{s^{2}}}{2} \cdot 3^{2} s^{2}$$

$$s = 44.1m$$

Wenn man bei der Zeitmessung einen persönlichen Fehler von 0,3 s ansetzt, ist der große Rechenaufwand über die quadratische Gleichung sicher nicht notwendig. Die Zeit, die der Schall nach oben benötigt, liegt noch innerhalb dieses Fehlerbereiches.

Antwort: Der Brunnen ist 40,6 m tief.