
Aufgaben zur gleichförmigen Bewegung

Aufgaben

- 1. Ein Radfahrer startet um 7.00 Uhr in Leipzig und fährt mit der mittleren Geschwindigkeit 20 km/h nach Berlin. Um 9.00 Uhr fährt ein Auto von demselben Punkt in dieselbe Richtung ab. Es besitzt die mittlere Geschwindigkeit 80 km/h. Wann und nach welcher Strecke hat das Auto den Radfahrer eingeholt?
- **2.** Mit welcher Geschwindigkeit muss das Erdöl in einer Rohrleitung von 100 cm² Querschnitt fließen, damit im Laufe einer Stunde 18 m³ davon hindurchfließen?
- **3.** Ein Auto mit 60 kmh⁻¹ wird von einem zweiten mit 70 kmh⁻¹ überholt. Wie lange dauert der Überholvorgang und welche Fahrstrecke muss der Überholer dabei zurücklegen? Der gegenseitige Abstand vor und nach dem Überholen betrug 20 m und beide Wagen sind je 4 m lang.
- **4.** Zur Zeit t_0 = 0 fährt 60m vor einem PKW (V_{Pkw} = 54km/h) eine Straßenbahn mit einer Geschwindigkeit von 36km/h. Beide behalten ihre Geschwindigkeit bei.
- a) Wie viel Meter muss der PKW fahren, bevor er die Straßenbahn erreicht?
- b) Welche Strecke legt die Straßenbahn in dieser Zeit zurück?
- c) Wann erreicht der PKW die Straßenbahn?
- **5.** Ich fahre mit 130 km/h auf der rechten Spur der Autobahn und nähere mich einem mit 100 km/h fahrenden LKW von 10 m Länge. Als ich 100 m hinter dem LKW bin und zum Überholen ansetzen will, fahre ich an der Anzeigetafel 1000 m vor meiner Abfahrt vorbei. Wie weit vor der Abfahrt schließt man den Überholvorgang ab, wenn man ordnungsgemäß im 2-s-Abstand vor dem LKW wieder auf die rechte Fahrbahn wechselt? Mein Auto hat eine Länge von 4 m. (2-s-Abstand: Sicherheitsabstand zwischen zwei Fahrzeugen; ist der Abstand, den ein Fahrzeug in 2 s zurücklegt.)
- **6.** In einem Experiment wurden für die Bewegung eines Spielzeugautos folgende Messwerte aufgenommen:

s in cm	0	16	32	48	64	80	96	112	128
t in s	0	2,1	3,9	6,2	8	10,1	11,9	14	16,1

- a) Zeichne das Weg-Zeit-Diagramm!
- b) Bestimme die Wege, die in 7 s und in 11 s zurückgelegt wurden!
- c) Bestimme die Zeiten, die für 40 cm und für 120 cm benötigt wurden!
- **7.** Auf unterschiedlichen Fahrbahnen einer Straße bewegen sich zwei Fahrzeuge A und B so, wie es in dem t-x-Diagramm dargestellt ist.
- a) Interpretieren Sie das Diagramm.
- b) Welche physikalische Bedeutung hat der Schnittpunkt der beiden Kurven?

Lösungen:

Antwort:

1.					
geg.:	$v_1 = 20 \frac{km}{h}$ ges.:				
	$v_2 = 80 \frac{km}{h}$				
Lösung:	Wenn das Auto den Radfahrer eingeholt hat, haben beide Fahrzeuge die gleiche Strecke zurückgelegt. Es gilt also: $s_1 = s_2$ Die bis dahin benötigten Zeiten unterscheiden sich um 2 Stunden, die Zeit des Radfahrers ist 2 Stunden größer. $t_1 = t_2 + 2h$ Weiterhin gilt, da die Bewegungen als gleichförmig betrachtet werden,: $v = \frac{s}{t}$ Nach s umgestellt und in die erste Gleichung eingesetzt: $s = v \cdot t$ $v_1 \cdot t_1 = v_2 \cdot t_2$ Setzt man die 2. Gleichung noch ein, kann man eine der Fahrzeiten ausrechnen: $v_1 \cdot t_2 + 2h = v_2 \cdot t_2$ $v_1 \cdot t_2 + v_1 \cdot 2h = v_2 \cdot t_2$ $v_1 \cdot 2h = t_2 \cdot (v_2 - v_1)$ $t_2 = \frac{v_1 \cdot 2h}{(v_2 - v_1)}$ $t_2 = \frac{v_1 \cdot 2h}{(v_2 - v_1)}$ $t_2 = \frac{v_1 \cdot 2h}{(v_2 - v_1)}$ Das Auto fährt 2/3 h. Das sind 40 min. Da er 9.00 Uhr losgefahren ist, erreicht er den Radfahrer um 9.40 Uhr. Er ist dabei $s = v \cdot t$ $s = 80 \frac{km}{h} \cdot \frac{2}{3}h$ $s = 53.3 km$ gefahren. Der Radfahrer ebenfalls: $s = v \cdot t$ $s = 20 \frac{km}{h} \cdot 2\frac{2}{3}h$				
	s= 53,3 km				

Die beiden treffen sich um 9.40 Uhr nach 53,3 km.

2.

۷.						
geg.:	A = 100 cm ² ges.: v					
	V= 18m ³					
	t= 1h					
Lösung:	Das Öl fließt gleichförmig mit der Geschwindigkeit v. Das Volumen, dass gefordert ist, ist allgemein die Fläche des Rohrquerschnitts mal die Länge einer Ölssäule. V = A · s $s = \frac{V}{A}$					
$S = \frac{18 \mathrm{m}^3}{100 \cdot 10^{-4} \mathrm{m}^2}$						
	s= 1800 m					
	In einer Stunde muss das Öl aus 1800 m Rohrleitung herauslaufen.					
	$V = \frac{S}{t}$					
	$V = \frac{1,800 \text{km}}{1 \text{h}}$					
	v= 1,8 \frac{km}{h}					
Antwort:	Das Öl muss mit einer Geschwindigkeit von 1,8 km/h oder 0,5 m/s durch die Rohleitung fließen.					

3.

ა.			
geg.:	$v_1 = 60 \frac{km}{h} = 16.7 \frac{m}{s}$ $v_2 = 70 \frac{km}{h} = 19.4 \frac{m}{s}$ $a_1 = a_2 = 20 m$ $l_1 = l_2 = 4 m$	ges.:	t,s
Lösung:	stehend angenommene $20 \text{ m} \cdot 4$ $2^*20\text{m} + 4 \text{ m} + 4 \text{ m} = 48$ Die Zeit dafür: $v = \frac{s}{t}$ $t = \frac{s}{v}$ $t = 17,1s$	10 km/h schnelle en vorbei M 8 m (1)	= 2,8 m/s (1) Auto zurücklegen, um an dem als zufahren? 20 m 4 m muß wieder mit der wirklichen
Antwort:	Der Überholvorgang da 332 m zurück.	uert 17 s	s, das Auto legt dabei einen Weg von

4. Die Straßenbahn steht und das Auto fährt mit der Differenzgeschwindigkeit von 18 km/h = 5 m/s. Da der Abstand 60 m beträgt, braucht das Auto 12 s, um die Straßenbahn einzuholen. Damit fährt das Auto in dieser Zeit 15 m/s * 12 s = 180 m. Die Straßenbahn fährt 10 m/s * 12 s = 120 m. Der Abstand zwischen beiden Strecken beträgt 60 m, das war aber in der Aufgabe schon gegeben (= Probe).

5.							
geg.:	$v_{\rm p} = 130 \frac{\rm km}{\rm m}$ ges.: s						
	$v_{p} = 130 \frac{km}{h}$ $v_{L} = 100 \frac{km}{h}$ ges.:						
	s _{P-L} = 100 m						
	s _A = 1000 m						
	s _L = 10m						
Lösung:	Die Frage ist, wieviel m vor der Abfahrt kann ich vor dem LKW wieder auf die rechte Spur kommen. Dabei muss der 2 s-Abstand eingehalten werden. Dass heißt, der Sicherheitsabstand zwischen dem LKW und mir muss so groß sein, wie der LKW in 2 s fährt.						
	$V = \frac{S}{t}$						
	s= v·t						
	$s = 27.8 \frac{m}{s} \cdot 2s$						
	s= 55,6m						
	Welchen Weg muss ich insgesamt zurücklegen?						
	Als erstes nimmt man an, dass der LKW steht und ich an ihm mit der Differenzgeschwindigkeit vorbei fahre. Die Differenzgeschwindigkeit beträgt 30 km/h.						
	Wie groß ist der Weg bei stehendem LKW? Mein Abstand zum LKW vor dem Überholen + die Länge des LKW + die Länge meines Autos + der Abstand LKW - Auto nach dem Überholen. Mein Auto ist 4 m lang. Also: s= 100 m+ 10 m+ 4 m+ 55,6 m						
	s= 169,6 m						
	Wie lange brauche ich dafür mit 30 km/h?						
	$V = \frac{S}{t}$						
	$t = \frac{s}{v}$						
	$t = \frac{169,6 \mathrm{m}}{8,3 \frac{\mathrm{m}}{\mathrm{s}}}$						
	t = 20,4 s						
	Wie weit fahre ich nun aber wirklich in dieser Zeit?						
	$V = \frac{S}{t}$						
	$s = v \cdot t$						
	s= 36,1·20,4 s						
	s= 736,7 m						

Der Überholvorgang ist nach 736,7 m abgeschlossen. Bis zur Ausfahrt bleiben noch 264 m.

Antwort:

6. b) Weg nach 7 s: 54,5 m

Weg nach 11 s: 86 m c) Zeit für 40 cm: 5 s Zeit für 120 s: 15,5 s

7. a) Die Achsen enthalten die Zeit t und den Abstand x zu einem Nullpunkt.

Zum Zeitpunkt 0 befinden sich die beiden Fahrzeuge auf verschiedenen Seiten des Nullpunktes, A im Abstand von 300 m, B im Abstand von 100 m.

A bewegt sich mit einer konstanten Geschwindigkeit auf den Nullpunkt zu, B steht.

Nach 50 s, A ist gerade am Nullpunkt angelangt, fährt B in die entgegen gesetzte Richtung los. Kurz danach fahren beide Autos aneinander vorbei.

Fahrzeug B fährt schnelle als Fahrzeug A, da der Anstieg der B-Kurve größer ist als der Anstieg der A-Kurve.

b) Am Schnittpunkt haben beide Fahrzeuge seit Beginn der Beobachtung die gleiche Zeit und den gleichen Abstand vom Nullpunkt. Sie begegnen sich.